VIBRATIONAL INSTABILITY OF STATIONARY
CONVECTION OF A NON-NEWTONIAN FLUID

I. G. Semakin UDC 536.25:532.135

The stability of stationary convective flow of a non-Newtonian fluid tosmall perturbations, such
as traveling thermal waves, is investigated.

Convective flow of a non-Newtonian fluid is investigated foran infinite vertical planar channel with iso-
thermal walls having a constant temperature difference. The distance between the walls is 2h and the tempera-
ture difference is 2@,. The rheological equation is

Ty = —8;p +n(l +al)" e, (1)
For n=1 or a=0the rheological equation of anordinary Newtonian fluid is obtained, while for g—« a transition

occurs to the Ogstwald power-lawmodel.

At a constant temperature difference between the walls a stationary plane-parallelmotion is generated in
the channel with odd velocity profiles. Stationary flow was considered in detail in [1]. Inthe presentpaper we
investigate the stability of such flow tomonotonic hydrodynamic disturbances.

As is well known, a vibrational instability to perturbations such as traveling thermal waves is generated
ina flow of a non-Newtonian fluid, starting with a Prandt]l number equal to 11.4(see {2]). With increasing Pr
this instability becomes more dangerous. The same result was qualitatively obtained in [3] for a power-law
fluid, where the flow stability was investigated in the effective viscosity approximation by the Galerkin method.

In the present paper we consider the stability of stationary convective flow with a large Prandtl number
to planar "normal" veloeity and temperature disturbances of the form exp(—At +ikz), where k is the wave num-
ber in the direction of the vertical z axis and A is the decrement. An equation was derived in [1] for the ampli-
tudes of normal disturbances. Denotingthe amplitude of the perturbing stream function by &(x) and the ampli-
tude of the temperature perturbation by #(x), we obtain:

MO — ik Gr HO + M (DY + kD) — 2NRQD" -+ 2RE2Y - 2(L + R) @' + (L + RY (D" + k2®) - 9" = 0, (2)
ProtA® 4 ik Gr(To® —v,8) = — A9, (3

where H= 0pA — ) ; AD = @" — 20; A2D = ©'V — 2020 1 £,

The following notation was used in these equations:

A=14alv, R=a(n—1) (A" lud,
L=2(A""", M=A""'+a@n—1)4"7 v,
N=A""—a@n—1) A" v

The coordinate axes were chosen in such a manner that thex axis is perpendicular to the channel walls and

the z axis is parallel to them and passes through the middle of the layer. The prime denotes differentiation
with respect to x.

The following boundary conditions are satisfied at the solid isothermal walls of the channel:
OD=Q'=§4=0 for x= 1. (4)

All quantities in the equations derivedare dimensionless. The units of distance, time, stream, and tem-
perature functions are, respectively, h, th /M, pgﬁ®0h3 /n, ®,. Thedimensionless parameters of the problem
are the Grashof and Prandtl numbers:

Gr == p2gPOyhd/m%, Pr = n/xp,
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Fig. 1. Lower sections of the neutral curves of vibrational in-
stability of a stationary convective flow of anon-Newtonian fluid
at Pr=20. The dashed line is the neutral curve for a Newtonian
fluid.

Fig. 2. The critical Grashof number Grycras a function of the
dimensionless parameter & for various values of n,

where vyand T, are the stationary velocity and temperature profiles.

The boundary-value problem (2)-(4) determines a spectrum of decrement eigenvalues A and eigenfunctions
$(x) and H(x).

For certain values of the parameters n, ¢, Gr, Pr, and k the problem (2)-(4) was solved by the Runge —
Kutta method with stepwise orthogonalization (the method is presented in detail in [4]). The lowest branch of
the decrement spectrum was searched. The critical Grashof number as well as the phase velocity correspond-
ing to a neutraldisturbance were determined from the vanishing condition of the real part of the decrement
Re(A)=0. We thus succeeded in constructing the neutral curve Gr(k) for fixed values of the remaining param-
eters.

The calculations were performed for Pr =20. Figurel shows the neutral curves of vibrational instability
for several values of the rheological parameters n and ¢. For comparison, the dashed line shows the neutral
curve of a Newtonian fluid with the corresponding Prandtlnumber. The three lowest curves of the family cor-
respond to a medium with pseudoplastic behavior (n=0.8). As seenfrom Fig. 1, an increase in the value of
i leads to a decrease in the critical Grashof number, i.e., toflow destabilization. The same result is quali-
tatively obtained for monotonic hydrodynamic instability [1}. Besides, anincrease inthe @ value leads to a
marked decrease in the critical wave number. Theupper part of Fig. 1 showsneutral curvesofa dilatational
fluid (n=1.1). Here, on the other hand, with increasing @both the critical Grashof number and the critical
wave number increase.

To determine the limits of stability inthe preceding case of large Prundtlnumbers we apply the method
of asymptotic expansions in powers of the small parameter pPr-/2, Us ing this method, the stability of several
convective flows of a Newtonian fluid was investigated [5].

We introduce the small parameter e = Pr~'/2 and represent &, ¢, Gr, and A in the form of the expansions

O=00Q,+eD,+ ..., h=ghg—hg+ ..., 9 =0, —¢ed — ..., )
Gr=eQGr;+ ...
Substituting (5) in system (2), (3) and retaining only zeroth-order terms in g, we obtain
M@} + £*Dp) — 2NRD; + 2RD; + 2(L + R) D+ (L + R)' (4 £2D) + 9 = 0, 6)
ik Gry (Tg @y — U500) = — Agtho- (M
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Fig. 3. The critical Grashof number as a function of the
parameter 4 for Pr=20 andn=0.8(a); n=1.1 (b). The
solid line results from the asymptotic method and the
dashed line from the method of stepwise integration of
the amplitude equations. '

It follows from Eq. (7) with aceount of the linearity of the basic temperature profile that $,=®&,/(u — v;), where
u=2y/ik Gr;. Following substitution in the first equation, we obtaina zeroth-order boundary-value problem for
&0:

. . " 0) ’
M@} + kD) — 2NRDG - 2REXDg — 2(L + R) @y -+ (L +RY (@p + #20) + ( - “v ) =0, ®)
— %
@, =®Dy=0 for x==+1. (9
The conjugate problem is hence constructed. This is done by standard procedures [2]. As aresult, we obtain
(M) + Mhtp — 262 (NpY" — 262 (R) — 2(S9)"" + (S"9)"+ #2S"p — - v ” =0, (10)
]
=9 =0 fo x=cx1 (11
Here S=L+R.
The first-order equation in ¢ is the following
M@ - kSD,) — 2NKD 4 2RED; + 25®;" + 8’ (@] - B2D) + 81 = — MD, + ik Gr, HD,, (12)
ik Gri (T(; (D‘ - vo‘ﬁi) -+ 7\1)'&1 == — A‘&o. (13)
Eliminating 4, we obtain anequation for the stream amplitude to firstorder:
. . . O .
M@} + k') -— 2NE2D] + 2RE2®; + 2(L + R) @, + (L + RY (@] + kD) + ( - ‘v ) = Q (D), (14)
— %Y

1 AD, v D200, 20, ©
where Q(&;) = — ik Gr, (uAD, — HD,) + { 0 Yo 0D 0

%Gr, |@—op) @—uy @ °_ 00)4] + The solvability condition

of inhomogeneous equation (14) is the following:

1
5' Q(®@,) pdx =0, (15)
—i
where 3 is the solution of conjugate problem (10), (11). An equation for Gr; is obtained from this condition:
. 1
I \7
Gry= | ——1 ">
Ty ( &2, ) (16)
where
1 ’z
» ’ ’ 2 q)
],1 _ A(Do vO (DO + 200 o Vo ‘l ] 1P,dx;
(4 — vp)? (e —0o)? (4 —vy)
-1
1
o=— | @A®,— HD) ydx.

Boundary-value problems (8), (9) and (10), (11) were integrated by the Runge — Kutta method. The eigen-
values were found by the chord method from the solutions of the conjugate problems. Sincethe phase velocity
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of the disturbance for large Pr is always larger than the maximum flow veloeity, Eqgs. (8), (10) contain no
singularities.

Neutral curves Gr;(k) were calculated for n valuesequal to 0.7, 0.8, 0.9, 1.05, 1.1, 1.2, and for various
values of @. Minimization with respect to the wave numberk gives the critical value Grygr. Figure 2 shows
the dependence of the critical value Gryoy onthe parameter & for various n. The maximum valueof 3 up to
which calculations were performedis 110; for n=1.05 this value is 150. For n<1 there occurs in these limits
of @ a noticeable constancy of the value Gryor. For adilatational fluid (n>1) this does not occur. Foralln
the value of Gry . tends to 590 for @ —0, corresponding to the well-known resultfor a Newtonian fluid.

The critical value of the Grashof number inthe preceding case oflarge Pr is relatedto Gryey by the equa-
tion

Gr o= [Gryep (a, /¥ Pr.

Thus, for large Pr, as wellas in the case of a Newtonian fluid, the square root law Grqy =C/Pri/? is satisfied,
where the coefficient C depends onthe rheological parameters. Asseen from Fig. 2, for a pseudoplastic fluid
in the range of large & the coefficient C stops being dependenton 4 and is determinedby the index nonly. While
for n=1 (a Newtonian fluid) C =590, for n=0.9, 0.8, 0.7 we have C =325, 230, 130, respectively, indicating a
significant reduction instability.

It is interesting to compare the stability limit obtained by the asymptotic method with the results of numer-
ical integration of the total amplitude equations of normaldisturbances. Figure 3 showsthis comparison for
Pr=20. The solidline shows the dependence Grg, =Gr;oy/v20 and the dashed one is obtained from the critical
points of the neutral curves shown in Fig. 1.

The results seem to be inqualitative agreement. The quantitative differences are related to the fact
that the asymptotic results are used in the range of quite high Pr values [5]; in this sense Pr =20 cannot he
considered to be sufficiently large.

It follows from the results of this work and of [1]that for a non-Newtonian fluid with a rheological equation
of type (1) the same instability mechanisms of a stationary plane-parallel convective flow occuras fora New-
tonian fluid. The quantitative instability characteristics depend strongly onthe rheological parameters.

NOTATION

h, half-width of the layer; @;, halfof the wall temperature difference; Tijs internal stress tensor; egj»
deformation rate tensor; I=v(1/2)8ijéji, second invariant of the deformation rate tensor; n, rheological index
(positive and integer); a, rheological parameter; @, dimensionless rheological parameter; 7, consistency coef-
ficient; p, pressure; t, time; A, time decrement; k, wave number; &, amplitude of normal disturbances of the
stream function; 4, amplitude of normal temperature disturbances; v,, stationary velocity distribution; T,
stationary temperature distribution; p, fluid density; g, acceleration dueto gravity; 8, temperature coeffi-
cient of bulk expansion; x, thermal diffusivity; and ¢, eigenfunction of the conjugate boundary-value problem.
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